Molecular and Cellular Mechanisms of Asbestos Fiber Toxicity

Cynthia Timblin, Ph.D.
University of Vermont

Cellular and Molecular Mechanisms of Asbestos Fiber Toxicity

- Interaction of asbestos fibers with cells of the respiratory tract
 - chemical and physical properties of fibers
 - iron-catalyzed reactions that generate reactive oxygen species (ROS)
- Sequence of cellular events after inhalation of asbestos fibers
 - inflammatory response
 - production of cytokines/chemokines/growth factors
 - cell injury and proliferation

Mechanisms cont.

- Sequence of cell signaling events stimulated by asbestos fibers
 - signal transduction pathways [e.g., Mitogen Activated Protein Kinase (MAPK) pathway]
 - activation of transcription factors [e.g., Activator Protein-1 (AP-1)]
 - alterations in gene expression
 - cell injury, survival, proliferation, transformation

COLONY FORMING ABILITY OF HUMAN MET 5A CELLS AND RAT PLEURAL MESOTHELIAL (RPM) CELLS FOLLOWING EXPOSURE TO ASBESTOS

Cell Signaling — Transcription Factor — Activation

(MAPK) Activation

(AP-1)

Gene Expression → Biological Response → Disease

Cell Injury/Survival

Cell Proliferation

Cell Transformation

MECHANISMS OF ACTION OF c-fos/c-jun

Steady-state mRNA Levels of c-fos in Rat Pleural Mesothelial Cells (RPM)

Steady-state mRNA Levels of c-jun in Rat Pleural Mesothelial Cells (RPM)

GENE EXPRESSION OF PROTOONCOGENES AFTER EXPOSURE OF RAT PLEURAL MESOTHELIAL (RPM) CELLS TO ASBESTOS

Asbestos-Induced AP-1 Activity in Mesothelial Cells

MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) CASCADE

- * ERK=Extracellular Signal-Regulated Kinase
- * JNK=c-Jun N-terminal Kinase
- * p38

MAP KINASE ACTIVITY IN RAT PLEURAL MESOTHELIAL (RPM) CELLS

erk2 ACTIVITY IMMUNOPRECIPITATED FROM RAT PLEURAL MESOTHELIAL (RPM) CELLS

Human Met 5A Cells - Merged Confocal Images of EGF-R (Red) and Asbestos Fibers (Green)

Phospho-ERK in Lung Epithelial Cells

Western Blot for Phospho-ERKs

Immunoperoxidase Technique to Determine Changes in Cellular Distributions of Phosphorylated ERKs Following Exposure to Asbestos

A. Control Cells

B. Asbestos-exposed Cells

Immunohistochemical Localization of ERK Phosphorylation

Asbestos-Induced Stimulation of Extracellular Signal Regulated Kinases (ERK1/2)

Summary

- Cellular and molecular responses stimulated by asbestos fibers:
 - inflammatory response
 - generation of ROS/RNS by phagocytic cells
 - release of chemokines/ cytokines/ growth factors
 - cell injury/ cell proliferation
 - in vivo markers of cell proliferation
 - in vitro cell death (apoptosis), increases in total cell numbers
 - activation of cell signaling pathways, e.g. MAPK
 - interaction of asbestos fibers with growth factor receptors, e.g. EGFR
 - ERK phosphorylation by asbestos fibers but not nonpathogenic particles

Summary cont.

- translocation of phosphorylated ERK from cytoplasm to nucleus
- localization of phosphorylated ERK at sites of fiber deposition in lungs of animals exposed to crocidolite asbestos by inhalation
- transcription factor activation, e.g. AP-1
 - increased expression of early response genes c-fos and c-jun
 - increased AP-1 DNA binding and transcriptional activity